Voltage-dependent gating of ATP-activated channels in PC12 cells.

نویسندگان

  • K Nakazawa
  • M Liu
  • K Inoue
  • Y Ohno
چکیده

The possibility that P2X receptors exhibit voltage-dependent gating in a similar manner to nicotinic receptors was investigated in rat pheochromocytoma cells with the use of whole cell voltage-clamp techniques. In the presence of extracellular ATP, slowly activating inward currents were elicited by stepping from -50 mV to potentials more negative than -80 mV; these currents had a time constant of approximately 60 ms at -120 mV. This slowly activating component (as a fraction of the total ATP-induced current) increased with membrane hyperpolarization from -80 to -100 mV and was much increased when depolarizing prepulses were applied, although the time constant of activation was not altered by depolarizations. The fraction of the slowly activating current and its time constant were decreased as the ATP concentration was increased from 10 to 300 microM. Thus it has been demonstrated that voltage-dependent gating of ATP-activated channels does occur in PC12 cells, and that this gating is modified by agonist concentration. It is possible that such gating may serve as a postsynaptic mechanism to facilitate excitatory neurotransmission by contributing to the inward rectification of the ATP-activated currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.

Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two re...

متن کامل

Modulation of High-Voltage Activated Ca2+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate

Modulation of voltage-gated Ca(2+) channels controls activities of excitable cells. We show that high-voltage activated Ca(2+) channels are regulated by membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) with different sensitivities. Plasma membrane PIP(2) depletion by rapamycin-induced translocation of an inositol lipid 5-phosphatase or by a voltage-sensitive 5-phosphatase (VSP) suppresse...

متن کامل

Two types of BK channels in immature rat neocortical pyramidal neurons.

1. The properties of large conductance Ca(2+)-activated K+ channels (BK channels) were investigaed in neocortical infragranular pyramidal neurons by the use of inside-out patch recordings. Neurons were acutely isolated from slices of newborn to 28-day-old rats (P0-P28) by using minimal protease exposure followed by trituration with a vibrating glass probe. Two types of BK channels, slow-gating ...

متن کامل

Evidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes

Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 2  شماره 

صفحات  -

تاریخ انتشار 1997